Friday, May 3, 2013

CDC: Full-Genome Deep Sequencing and Phylogenetic Analysis of Novel Human Betacoronavirus

Emerging Infectious Diseases

Volume 19, Number 5—May 2013


Matthew Cotten, Tommy T. Lam, Simon J. Watson, Anne L. Palser, Velislava Petrova, Paul Grant, Oliver G. Pybus, Andrew Rambaut, Yi Guan, Deenan Pillay, Paul KellamComments to Author , and Eleni Nastouli
Author affiliations: Wellcome Trust Sanger Institute, Hinxton, UK (M. Cotten, S.J. Watson, A.L. Palser, V. Petrova, P. Kellam); University of Oxford, Oxford, UK (T.T. Lam, O.G. Pybus); University College London, London, UK (D. Pillay, P. Kellam); University College London Hospitals,; London (P.Grant, E. Nastouli); University of Edinburgh, Edinburgh, Scotland, UK (A. Rambaut); Fogarty International Center–National Institutes for Health, Bethesda, Maryland, USA (A. Rambaut); The University of Hong Kong, Hong Kong (Y. Guan)


A novel betacoronavirus associated with lethal respiratory and renal complications was recently identified in patients from several countries in the Middle East. We report the deep genome sequencing of the virus directly from a patient’s sputum sample. Our high-throughput sequencing yielded a substantial depth of genome sequence assembly and showed the minority viral variants in the specimen. Detailed phylogenetic analysis of the virus genome (England/Qatar/2012) revealed its close relationship to European bat coronaviruses circulating among the bat species of the Vespertilionidae family. Molecular clock analysis showed that the 2 human infections of this betacoronavirus in June 2012 (EMC/2012) and September 2012 (England/Qatar/2012) share a common virus ancestor most likely considerably before early 2012, suggesting the human diversity is the result of multiple zoonotic events. 


No comments: